Sains Malaysiana 53(4)(2024): 769-780
http://doi.org/10.17576/jsm-2024-5304-04
Physiological Responses and
Tolerance of Three Acacia Species to Cadmium Stress during Germination and
Early Seedling Growth
(Tindak Balas Fisiologi dan Toleransi Tiga Spesies Akasia terhadap Tekanan Kadmium semasa Percambahan dan Pertumbuhan Anak Benih Awal)
LA ODE
MUHAMMAD MUCHDAR DAVIS1,*, NURHASANAH2,
TITI JUHAETI3 & INDRA GUNAWAN4
1Research Center for Genetic Engineering, National
Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor Km. 46, Cibinong
16911, West Java, Indonesia
2Biology Education Study Program, Faculty of Education and
Teacher Training, Universitas Terbuka, Jl. Cabe Raya Pondok Cabe, Pamulang, Tangerang
Selatan, 15418, Indonesia
3Research Center for Plant Conservation, Botanic Garden,
and Forestry, National Research and Innovation Agency (BRIN), Jl. Raya
Jakarta-Bogor Km. 46, Cibinong 16911, West Java, Indonesia
4Research Center for Horticulture and Plantation, National
Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor Km. 46, Cibinong
16911, West Java, Indonesia
Diserahkan: 30 Jun 2023/Diterima: 1 Mac 2024
Abstract
Soil
contamination with cadmium (Cd) is a serious threat to ecosystems.
Phytoremediation is a cost-effective green technology that can be used to clean
up Cd pollution, and Acacia species are potential phytoremediation agents due
to their fast growth, significant biomass, and tolerance to environmental
stresses. Most studies of Cd stress on Acacia focused on later vegetative
stages and the tolerances during germination and early seedling are elusive.
This study aimed to assess the tolerance of Acacia mangium, Acacia crassicarpa, and Acacia auriculiformis to Cd stress during germination and
early seedling growth. In response to 250 μM Cd
treatment, A. auriculiformis germination was
slightly increased compared to the control. Leaf organ formation remained largely
unaffected by Cd stress, except for the true leaf number in A. mangium, which was significantly higher in response to
125 µM Cd than those to 250 µM Cd treatment and control at 8 and 10 weeks after
treatment. The onset of phyllode development
transition from true leaf was significantly delayed in A. mangium compared with the other two Acacia,
irrespective of the presence of Cd. There were no significant differences in
leaf gas exchange parameters (photosynthesis, stomatal conductance, and
transpiration), leaf-level water use efficiency, or leaf chlorophyll content
between Cd-treated and control plants, suggesting that the three Acacia species
are tolerant to Cd at both germination and early seedling phases. Cd
accumulation during the experiment was very low in A. mangium seedlings (2.8 mg kg-1 upon 250 µM Cd) and insignificant in A. crassicarpa and A. auriculiformis,
indicating non-hyperaccumulation or Cd exclusion at
the seedling stage.
Keywords: Acacia auriculiformis; Acacia crassicarpa; Acacia mangium; cadmium; phytoremediation
Abstrak
Pencemaran tanah oleh Cadmium (Cd) merupakan ancaman yang serius bagi ekosistem. Fitoremediasi adalah teknologi hijau yang menjimatkan kos yang dapat digunakan untuk membersihkan pencermaran Cd dan spesies Akasia merupakan agen fitoremediasi yang berpotensi kerana pertumbuhan yang pantas, biojisim yang ketara dan toleransinya terhadap alam sekitar. Kebanyakan kajian tekanan Cd pada Akasia tertumpu pada peringkat vegetatif lanjut sedangkan toleransi semasa percambahan dan fasa anak benih masih belum difahami. Kajian ini bertujuan untuk menilai toleransi Acacia mangium, Acacia crassicarpa dan Acacia auriculiformis terhadap tekanan Cd semasa percambahan dan pertumbuhan awal anak benih. Sebagai gerak balas terhadap rawatan 250 μM Cd, percambahan A. auriculiformismeningkat sedikit apabila dibandingkan dengan kawalan. Pembentukan organ daun sebahagian besarnya tidak dipengaruhi oleh tekanan Cd, kecuali bilangan daun sebenar pada A. mangium,
yang lebih tinggi pada rawatan 125 µM Cd berbanding rawatan 250 µM Cd dan kawalan, pada 8 dan 10 minggu selepas rawatan. Permulaan peralihan perkembangan filod daripada daun sebenar telah terlewat dengan ketara pada A. mangium berbanding dua spesies Akasia yang lain, tanpa mengira kehadiran Cd. Tiada perbezaan yang ketara dalam parameter pertukaran gas daun (fotosintesis, kekonduksian stomata, dan transpirasi), kecekapan penggunaan air daun atau kandungan klorofil daun antara tumbuhan yang dirawat dan kawalan, menunjukkan bahawa ketiga-tiga spesies Akasia tersebut adalah toleran terhadap Cd pada kedua-dua fasa percambahan dan awal anak benih. Pengumpulan Cd semasa uji kaji adalah sangat rendah dalam anak benih A. mangium (2.8 mg kg-1 pada 250 µM Cd) dan tidak ketara dalam A. crassicarpa dan A. auriculiformis, menunjukkan bukan hiper-pengumpulan atau pengecualian Cd pada peringkat anak benih.
Kata kunci: Acacia auriculiformis; Acacia crassicarpa; Acacia mangium; fitoremediasi; cadmium
RUJUKAN
Ahmad, I., Akhtar,
M.J., Zahir, Z.A. & Jamil, A. 2012. Effect of cadmium on seed germination
and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pakistan
Journal of Botany 44(5): 1569-1574.
Ahsan, N., Lee, S-H., Lee, D-G., Lee, H., Lee, S.W., Bahk,
J.D. & Lee, B-H. 2007. Physiological and protein profiles alternation of
germinating rice seedlings exposed to acute cadmium toxicity. Comptes Rendus
Biologies 330(10): 735-746.
Ang, L.H., Tang, L.K., Ho, W.M., Hui, T.F. & Theseira,
G.W. 2010. Phytoremediation of Cd and Pb by four tropical timber species grown
on an ex-tin mine in Peninsular Malaysia. International Journal of
Environmental and Ecological Engineering 4(2): 70-74.
ATSDR. 2022. ATSDR’s Substance Priority List.
https://www.atsdr.cdc.gov/spl/index.html#2022spl Accessed 4 November 2022
Bae, J., Benoit, D.L. & Watson, A.K. 2016. Effect of
heavy metals on seed germination and seedling growth of common ragweed and
roadside ground cover legumes. Environmental Pollution 213: 112-118.
Baruah, N., Mondal, S.C., Farooq, M. & Gogoi, N. 2019.
Influence of heavy metals on seed germination and seedling growth of wheat,
pea, and tomato. Water, Air, and Soil Pollution 230: 273.
Bautista, O.V., Fischer, G. & Cárdenas, J.F. 2013.
Cadmium and chromium effects on seed germination and root elongation in
lettuce, spinach and Swiss chard. Agronomía Colombiana 31(1): 48-57.
Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F.,
Barrera-Díaz, C.E. & Vernon-Carter, E.J. 2010. Prosopis laevigata a
potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource
Technology 101(15): 5862-5867.
Cheng, W., Zhang, G., Yao, H. & Zhang, H. 2008. Genotypic
difference of germination and early seedling growth in response to Cd stress
and its relation to Cd accumulation. Journal of Plant Nutrition 31(4):
702-715.
Ekmekçi, Y., Tanyolaç, D. & Ayhan, B. 2008. Effects of
cadmium on antioxidant enzyme and photosynthetic activities in leaves of two
maize cultivars. Journal of Plant Physiology 165(6): 600-611.
Galiana, A., Chaumont, J., Diem, H.G. & Dommergues, Y.R.
1990. Nitrogen-fixing potential of Acacia mangium and Acacia
auriculiformis seedlings inoculated with Bradyrhizobium and Rhizobium spp. Biology and Fertility of Soils 9(3): 261-267.
Ghassali, F., Salkini, A.K., Petersen, S.L., Niane, A.A.
& Louhaichi, M. 2012. Germination dynamics of Acacia species under
different seed treatments. Range Management and Agroforestry 33(1):
37-42.
Griffin, A.R., Midgley, S.J., Bush, D., Cunningham, P.J.
& Rinaudo, A.T. 2011. Global uses of Australian acacias - Recent trends and
future prospects. Diversity and Distributions 17(5): 837-847.
Guilherme, M. de S., de Oliveira, H. & da Silva, E. 2015.
Cadmium toxicity on seed germination and seedling growth of wheat Triticum
aestivum. Acta Scientiarum 4: 499-504.
Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J.,
Zhang, R., Wenjun, M. & Farooq, M. 2021. Cadmium toxicity in plants:
Impacts and remediation strategies. Ecotoxicology and Environmental Safety 211: 111887.
Hatfield, J.L. & Dold, C. 2019. Water-use efficiency:
Advances and challenges in a changing climate. Frontiers in Plant Science 10: 103.
Hossain, M.L., Huda, S.M.S. & Hossain, M.K. 2009. Effects
of industrial and residential sludge on seed germination and growth parameters
of Acacia auriculiformis seedlings. Journal of Forestry Research 20(4): 331-336.
Huybrechts, M., Cuypers, A., Deckers, J., Iven, V.,
Vandionant, S., Jozefczak, M. & Hendrix, S. 2019. Cadmium and plant
development: An agony from seed to seed. International Journal of Molecular
Sciences 20(16): 3971. doi: 10.3390/ijms20163971
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. &
Beeregowda, K.N. 2014. Toxicity, mechanism and health effects of some heavy
metals. Interdisciplinary Toxicology 7(2): 60-72. doi:
10.2478/intox-2014-0009
Karalija, E., Selović, A., Dahija, S., Demir, A.,
Samardžić, J., Vrobel, O., Ćavar Zeljković, S. & Parić,
A. 2021. Use of seed priming to improve Cd accumulation and tolerance in Silene
sendtneri, novel Cd hyper-accumulator. Ecotoxicology and Environmental
Safety 210: 111882. doi: 10.1016/j.ecoenv.2020.111882
Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I.
& Dumat, C. 2017. A comparison of technologies for remediation of heavy
metal contaminated soils. Journal of Geochemical Exploration 182:
247-268.
Kirkham, M.B. 2006. Cadmium in plants on polluted soils:
Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137(1-2):
19-32.
Koutika, L.S. & Richardson, D.M. 2019. Acacia mangium Willd:
benefits and threats associated with its increasing use around the world. Forest
Ecosystems 6: 2.
Krämer, U. 2010. Metal hyperaccumulation in plants. Annual
Review of Plant Biology 61: 517-534.
Krantev, A., Yordanova, R., Janda, T., Szalai, G. &
Popova, L. 2008. Treatment with salicylic acid decreases the effect of cadmium
on photosynthesis in maize plants. Journal of Plant Physiology 165(9):
920-931.
Kubier, A., Wilkin, R.T. & Pichler, T. 2019. Cadmium in
soils and groundwater: A review. Applied Geochemistry: Journal of the
International Association of Geochemistry and Cosmochemistry 108: 104388.
doi: 10.1016/J.APGEOCHEM.2019.104388
Kumari, B.M.R. & Nagaraja, N. 2023. Studies on
phytoremediation of chromated copper arsenate (CCA) using Acacia plant species
(Fabaceae). International Journal of Phytoremediation 25(12): 1669-1675.
Küpper, H., Parameswaran, A., Leitenmaier, B., Trtílek, M.
& Šetlík, I. 2007. Cadmium-induced inhibition of photosynthesis and
long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi
caerulescens. New Phytologist 175(4): 655-674.
Lefevre, I., Marchal, G., Corréal, E., Zanuzzi, A. &
Lutts, S. 2009. Variation in response to heavy metals during vegetative growth
in Dorycnium pentaphyllum Scop. Plant Growth Regulation 59: 1-11.
Li, Q., Lu, Y., Shi, Y., Wang, T., Ni, K., Xu, L., Liu, S.,
Wang, L., Xiong, Q. & Giesy, J.P. 2013. Combined effects of cadmium and
fluoranthene on germination, growth and photosynthesis of soybean seedlings. Journal
of Environmental Sciences 25(9): 1936-1946.
Lin, Y.F. & Aarts, M.G.M. 2012. The molecular mechanism
of zinc and cadmium stress response in plants. Cellular and Molecular Life
Sciences 69(19): 3187-3206.
Majid, N.M., Islam, M.M. & Mathew, L. 2012. Heavy metal
uptake and translocation by mangium (Acacia mangium) from sewage sludge
contaminated soil. Australian Journal of Crop Science 6(8): 1228-1235.
McGrath, S.P. & Zhao, F.J. 2003. Phytoextraction of
metals and metalloids from contaminated soils. Current Opinion in
Biotechnology 14(3): 277-282.
Merlot, S., de la Torre, V.S.G. & Hanikenne, M. 2021.
Physiology and molecular biology of trace element hyperaccumulation. In Agromining:
Farming for Metals, edited by van der Ent, A., Baker, A.J., Echevarria, G.,
Simonnot, M. & Morel, J.L. Springer: Cham. pp. 155-181.
Mok, H.F., Majumder, R., Laidlaw, W.S., Gregory, D., Baker,
A.J.M. & Arndt, S.K. 2012. Native Australian species are effective in
extracting multiple heavy metals from biosolids. International Journal of
Phytoremediation 15(7): 615-632.
Munzuroglu, O. & Zengin, F.K. 2006. Effect of cadmium on
germination, coleoptile and root growth of barley seeds in the presence of
gibberellic acid and kinetin. Journal of Environmental Biology 27(4):
671-677.
Muradoglu, F., Gundogdu, M., Ercisli, S., Encu, T., Balta,
F., Ze Jaafar, H. & Zia-Ul-Haq, M. 2015. Cadmium toxicity affects
chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient
accumulation in strawberry. Biological Research 48: 11. doi:
10.1186/S40659-015-0001-3
Ng, C.C., Boyce, A.N., Rahman, M.M., Abas, M.R. &
Mahmood, N.Z. 2018. Phyto-evaluation of Cd-Pb using tropical plants in
soil-leachate conditions. Air, Soil and Water Research 2018: 11.
Nirola, R., Megharaj, M., Palanisami, T., Aryal, R.,
Venkateswarlu, K. & Naidu, R. 2015. Evaluation of metal uptake factors of
native trees colonizing an abandoned copper mine–a quest for
phytostabilization. Journal of Sustainable Mining 14(3): 115-123.
Peralta, J.R., Gardea-Torresdey, J.L., Tiemann, K.J., Gomez,
E., Arteaga, S., Rascon, E. & Parsons, J.G. 2001. Uptake and effects of
five heavy metals on seed germination and plant growth in alfalfa (Medicago
sativa L.). Bulletin of Environmental Contamination and Toxicology 66(6): 727-734.
Pilon-Smits, E. 2005. Phytoremediation. Annual Review of
Plant Biology 56(1): 15-39.
El Rasafi, T., Nouri, M., Bouda, S. & Haddioui, A. 2016.
The effect of Cd, Zn and Fe on seed germination and early seedling growth of wheat
and bean. Ekológia (Bratislava) 35(3): 213-223.
Rascio, N. & Navari-Izzo, F. 2011. Heavy metal
hyperaccumulating plants: How and why do they do it? And what makes them so
interesting? Plant Science 180(2): 169-181.
Ray, P.D., Huang, B-W. & Tsuji, Y. 2012. Reactive oxygen
species (ROS) homeostasis and redox regulation in cellular signaling. Cellular
signalling 24(5): 981-990.
Riveiro, S.F., Cruz, Ó., Casal, M. & Reyes, O. 2020. Fire
and seed maturity drive the viability, dormancy, and germination of two
invasive species: Acacia longifolia (Andrews) Willd. and Acacia
mearnsii De Wild. Annals of Forest Science 77(2): 60. doi:
10.1007/s13595-020-00965-x
Sari, E., Giyanto & Sudadi, U. 2016. Acacia
auriculiformis and Eragrostis chariis: Potential vegetations from
tin-mined lands in Bangka Island as Pb and Sn phytoremediator. Jurnal Ilmu
Tanah dan Lingkungan 18(1): 1-7.
Shabir, R., Abbas, G., Saqib, M., Shahid, M., Shah, G.M.,
Akram, M., Niazi, N.K., Naeem, M.A., Hussain, M. & Ashraf, F. 2018. Cadmium
tolerance and phytoremediation potential of acacia (Acacia nilotica L.)
under salinity stress. International Journal of Phytoremediation 20(7):
739-746.
Suman, J., Uhlik, O., Viktorova, J. & Macek, T. 2018.
Phytoextraction of heavy metals: A promising tool for clean-up of polluted
environment? Frontiers in Plant Science 9: 1476. doi:
10.3389/fpls.2018.01476
Taeprayoon, P., Homyog, K. & Meeinkuirt, W. 2022. Organic
amendment additions to cadmium-contaminated soils for phytostabilization of
three bioenergy crops. Scientific Reports 12: 13070. doi:
10.1038/S41598-022-17385-8
Titov, A.F., Talanova, V.V. & Boeva, N.P. 1996. Growth
responses of barley and wheat seedlings to lead and cadmium. Biologia
Plantarum 38(3): 431-436.
Ulusu, Y., Öztürk, L. & Elmastaş, M. 2017.
Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to
cadmium stress. Russian Journal of Plant Physiology 64(6): 883-888.
Verbruggen, N., Hermans, C. & Schat, H. 2009. Molecular
mechanisms of metal hyperaccumulation in plants. New Phytologist 181(4):
759-776.
Zhang, G., Yu, Z., Zhang, L., Yao, B., Luo, X., Xiao, M.
& Wen, D. 2022. Physiological and proteomic analyses reveal the effects of
exogenous nitrogen in diminishing Cd detoxification in Acacia auriculiformis. Ecotoxicology and Environmental Safety 229: 113057. doi:
10.1016/J.ECOENV.2021.113057
*Pengarang untuk surat-menyurat; email: laod004@brin.go.id
|